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Part I

Preamble
Since the invitation to the program Novos Talentos that I was looking for something in the
area of Combinatorics. As such, I was led to Professor José Fachada, who mentioned two
problems in this area, which even have solutions in ”Proofs From The Book”. One of them
was the main target of my work this year, the Dinitz Problem.

The study of those two problems drove me to work on graphs and to establish some
definitions on stable matching, which led to the solution of the Dinitz problem. A study
of some propose-dispose algorithms for University admissions and a search for some deep
results on stable matching applied to lattices, polytopes and linear programming complete
my work.

Part II

Dinitz Conjecture

1 The problem

Forty years ago, Jeff Dinitz posted a question about coloring matrices that was left unsolved
for 20 years. The history begins with a latin matrix: a matrix m × n, in which no column
or line has the same entry twice.

Filling in a latin square, Jeff decided to impose some restrictions: that’s how he got to
the definition of a Dinitz Matrix.

Definition 1. By a Dinitz’s Matrix, we understand a square matrix A, m× n, where each
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entry is a set Si,j with max{m,n} elements, which we regard as colors.
A Dinitz’s Matrix is said to be solvable if there is an m × n latin matrix L, such that

Li,j ∈ Si,j for each i, j. This means that we can pick some elements of the given sets in order
to obtain a latin matrix.

For example, here is a Dinitz’s Matrix : A =

(
{1, 2} {1, 3}
{1, 2} {2, 3}

)
Conjecture 1. Dinitz’s Conjecture

All Dinitz’s Matrixes are solvable.

This is the typical ”easy to state - hard to break” problem.
The question arose in 1978. At that time someone observed that the problem can be

reduced to square matrixes and still be equivalent to the original one. This is the version of
the Conjecture we are going to focus on.

It was, however, the last thing to be proven: in 1993, Jeannette Janson proved the
Conjecture for rectangles, and only in 1995 did Fred Galvin prove it to square matrixes.
He used a very similar solution to the one in Jeannette’s paper. The world saw a beautiful
adaptation of this proof in ”Profs From The Book”.

2 Familiarization with the Problem

Let’s put our hands on the dirt with some examples:

Example 1. Take the square A =

(
{1, 2} {1, 3}
{1, 2} {2, 3}

)
At the light of Dinitz’s Conjecture, we can say that there is a choice that transforms A

in a latin square. Let’s find it!
We pick the color 2 in the (2, 1)1 entry, for the sake of the example. That forces us to

chose color 1 in (1, 1) and color 3 in (2, 2), because we can have no repeated colors in each
row or column, which leaves us with no color to paint the (1, 2) entry.

Of course, if we had chosen color 1 in (1, 2), that would lead us to a solution, namely

L =

(
2 1
1 3

)
.

For small cases, the trial-and-error approach is quick, but for larger matrices that is not
the simplest choice:

Example 2. Consider the square Dinitz’s Matrix

B =


{2, 3, 4, 5} {1, 3, 4, 5} {3, 4, 5, 6} {2, 4, 5, 6}
{2, 3, 5, 6} {2, 4, 5, 6} {2, 4, 5, 6} {3, 4, 5, 6}
{1, 3, 4, 5} {1, 2, 4, 5} {1, 4, 5, 6} {1, 2, 3, 4}
{2, 4, 5, 6} {2, 3, 4, 5} {1, 2, 4, 6} {1, 3, 5, 6}

.

We want to find a latin coloring on this Dinitz’s Matrix. The trial-and-error approach
on this matrix may scare us a little bit, but fear not, because better methods are coming soon.

1Line 2, column 1
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Let’s represent the Dinitz’s Matrixes in some other way. We construct a graph L(Kn,n)
where the vertices are the entries of the matrix V = {1, 2, · · · , n} × {1, 2, · · · , n}, and we
draw an edge between (i1, j1) and (i2, j2) if i1 = i2 or j1 = j2. We call it the line graph of
Kn,n

2
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Figure 1: K4,4 graph

Painting matrices corresponds to painting vertices on this L(Kn,n) graph, the same as
painting edges on Kn,n, with the required restrictions. Therefore, in this graph each edge
corresponds to an entry on the Dinitz’s Matrix.

Our goal in Kn,n is to paint the edges according to the restrictions, such that no two
neighbor edges are monochromatic. If we consider only the subgraph D1 of the edges that
can be painted with, let’s say, the color 1, we obtain a subgraph of Kn,n, in which we would
like to select a subset of non-neighbor edges, see figure 2. 3.
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Figure 2: Graph D1 corresponding to the color 1

Let’s check that D1 is the graph constructed by the color 1: 1 ∈ S1,2 so there is an
edge (y1, x2) on D1. Similarly, 1 ∈ S3,2 so we draw the edge (y3, x2) on D1, and so on. An
independent set would be {(y1, x2), (y3, x1), (y4, x4)}, or {(y3, x2), (y4, x4)} or even {}, so our
work from now on is to select from the pool of independent sets available, the one that better
suits our needs.

2The ”line graph” operation is a more general transformation on graphs. Roughly speaking, it regards
the vertices in L(G) as the edges in G, and links between two vertices of L(G) if the corresponding edges in
G share a vertex. The definition can be found later (see Definition 8).

3We will recall such sets as independent sets
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Part III

Stable Matching
We are now going to study the Matching Problem. In this context we study a finite family
A = {a1, a2, · · · } of universities, or girls, that are going to evaluate and match someone in
the finite family B = {b1, b2, · · · } of students, or boys.

In this problem we consider a number of relations in the family A and in the family B:
For each a ∈ A we consider a total order in [a subset of, if the problem has non-willing
pairs4] B and likewise for each b ∈ B, consider a total order in [a subset of] A. Those order
relations intuitively explain that each student has is own preferences on each university, and
each university ranks the students in its own way. By convenience we accept that there are
no draws.

We represent that order relation by saying that b prefers a rather than a′, or a >b a
′.

We represent also the ordered list Aa = {b∗1, b∗2, · · · } of the preferences of a, and similarly
Bb = {a∗1, a∗2, · · · }. We assume that each university has na > 0 seats available.

This is the Matching Problem.

A matching is a subset S of A×B such that each a ∈ A occurs in S at most na times,
and each b ∈ B occurs at most one time. In that sense, a matching either assigns each
b ∈ B to exactly one a ∈ B, or doesn’t assign b to anything.

The abstract idea of a matching is a subgraph of KA,B 5 with deg(a) ≤ na and deg(b) ≤ 1.
This abstract notion in bipartite graphs is what distinguishes this approach, since the very
same theory would have some flaws if a general graph structure were considered, as we will
see later on.

We ask by now if there is an optimal way to choose a matching. We will give a precise
meaning to the notion of a Stable Matching and an Optimal Stable Matching. The
former will give us a fantastic way to establish the proof for Dinitz’s Conjecture.

Definition 2. Unstable pair, Stable Matching
Given a matching S between A and B, and a pair (a, b) ∈ A × B, we say that (a, b) is

unstable if the three following conditions are met:

• (a, b) 6∈ S

• If ∀a∗ ∈ A, (a∗, b) 6∈ S, or there is some a∗ ∈ A such that (a∗, b) ∈ S and a∗ <b a

• If ∀b∗ ∈ B, (a, b∗) 6∈ S, or there is some b∗ ∈ B such that (a, b∗) ∈ S and b∗ <a b

A matching is stable if there is no unstable pair.

4We consider this additional structure when regarding a problem where it is not possible to match a pair
(a, b)

5We mean a K#A,#B, which we assign a specific meaning to each vertex
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Looking at the metaphor of matching girls and boys, we see a pair (a, b) of a girl and a
boy as unstable if both the girl and the boy, currently in other relationships, would improve
their status by breaking up with their matches and begin a relationship between themselves.

Additionally, we create the notion of an optimal matching. A matching S is optimal if,
among all the stable matchings on a Matching Problem, any b ∈ B is not in a worst match
in S than in S ′.

Definition 3. Optimal stable Matching
A Stable Matching S is said to be B-Optimal if, for any stable matching S ′ and any

b ∈ B, there are no a ∈ A such that (a, b) ∈ S ′ or, if there is, there is a∗ ∈ A such that
(a∗, b) ∈ S and a∗ ≥b a.

This definition imposes a clear uniqueness of the B-Optimality.
If we set na = 1 for each a, there is a duality in this definition that may lead to a notion

of A-Optimal. We will pay some attention to that in due time.
One may wonder about the existence of stable matchings and optimal stable matchings.

They do exist, and there is a precise construction.
However, their existence is not so general as it may seem at first glance. On this brief para-

graph, we take a few moments to see the big picture and introduce the notion of matchings
and stability on a general graph and lists of preferences. Take the Roommate problem,
where there are four boys, a1, a2, a3 and a4, that have to share two double rooms. Here, we
consider that:

• a1 prefers a2 over the others;

• a2 prefers a3 over the others;

• a3 prefers a1 over the others;

• Everyone classifies a4 as the last one.

As one can check, whoever ends up with a4, say wlog a1, would rather be with some of
the other guys; in fact, as a3 prefers a1 over the others, the pair (a1, a3) would be an unstable
pair. Hence there is no stable matching in this case.

We will prove the existence of a stable matching on the case at hand (bipartite graphs),
via the Gale-Shapley Algorithm.

1 The Gale-Shapley Algorithm

Consider now a Matching Game, in which na = 1, #A = #B and there are no non-willing
pairs. Note that we can change any Matching Game to attain these characteristics without
losing any stability or optimality, by creating copies of universities with the same list of
preferences, ghost-universities that no student would like to apply to, and ranking the ones
no one wants to apply to as the last ones, so we don’t lose generality.
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The results proved henceforth will assume these circumstances, but will not depend on
them unless stated otherwise.

In this set-up, a stable matching corresponds to a bijective function f : B → A, i.e, any
a ∈ A and any b ∈ B are matched to one (and only one) other person, because there are no
non-willing pairs. This is called the Matching function.

Gale-Shapley Algorithm (or Proposal-Disposal Algorithm):

1. Begin with no matches (this matching is clearly unstable).

2. At each step, any b ∈ B that is unmatched selects the ab ∈ A of his dreams, i.e., the
one that is on the top of his list. Then, b ”proposes” a matching between him and ab.

3. When an a ∈ A receives some proposals, she selects the one that she likes the most,
and rejects the others. The b selected keeps ”on hold”, until a better one appears, or
until the algorithm ends.

4. When a ”proposal” from b ∈ B get’s rejected, he proceeds to delete ab from his list,
restarting from point 2.

5. The algorithm stops when all b ∈ B are matched, or when there are no more proposals
to be done.

At the end, we will have a matching of the original Matching Problem. This matching
is complete (i.e. all elements are matched to someone) when #A = #B and when no non-
willing pairs exists, because if some b ∈ B is not matched, he already proposed to every
a ∈ A, which means that every a ∈ A is matched.

2 Brief analysis of the Gale-Shapley Algorithm

Some notes on the algorithm will help us proving the existence of a stable matching, and
we will talk about them right now. After those observations are stated, we will dive in
the demonstration that an optimal-B stable matching exists, and is the one given by the
Gale-Shapley Algorithm.

We note that, through the algorithm, every b ∈ B is going down his list until the end.
Similarly, every a ∈ A is always moving up her list.

We could apply this algorithm in a symmetrical way: by making each a ∈ A propose to
her preferred b ∈ B. The result would not be the same in general: in fact, they are the same
if and only if there is only one stable matching.

Lemma 1. The Gale-Shapley algorithm gives a stable matching when na = 1, #A = #B
and there are no non-willing pairs
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Demonstration:
Consider an unstable pair (a, b) ∈ A× B. Then f(b) <b a .6

Since b is matched with some f(b) ∈ A such that a >b f(b), at some point b proposed to
a and was rejected. This means a had a better proposal and ended up being matched with
some b∗ ∈ B such that b∗ >a b.

We conclude (a, b) is not an unstable pair, contradicting the hypothesis.

�

We could have broadened the scope of the Theorem, by not imposing any restrictions in
the Matching Problem.

We will now prove the optimality condition:

Lemma 2. The Gale-Shapley algorithm gives an optimal stable matching when na = 1,
#A = #B and there are no non-willing pairs.

Demonstration:
For each b ∈ B, we say that an a ∈ A is b-possible if there is a Stable Matching S ′ such

that (a, b) ∈ S ′. Define ab ∈ A as the match of b given by the Gale-Shapley algorithm. We
want to prove that ab ≥b a for each a ∈ A that is b-possible.

We will prove inductively that, at each step of the algorithm, there were no a ∈ A, b ∈ B
such that b was declined by a, where a is b-possible: clearly, at the beginning, no such decline
was done (there were no declines at all) so this is our base case.

Suppose now that we find ourselves in an arrangement that meets the induction hypoth-
esis when a declines b. So there are b∗ ∈ B such that

• b∗ was turned down by every a∗ >b∗ a

• b∗ >a b

Suppose by sake of contradiction that a is b-possible, so there is a Stable Matching S ′

such that (a, b) ∈ S ′. We will manage to prove that (a, b∗) is an unstable pair, contradicting
the statement that S ′ is a Stable Matching. 7

Since b∗ was turned down by every a∗ >b∗ a, by induction hypothesis, none of the a∗ >b∗ a
are b∗-possible, and since a is matched with b, it can’t be matched with b∗. Then b∗ is matched
with some a∗∗ <b a in S ′. This concludes the instability property of (a, b∗), contradicting
that S ′ is unstable, and hence contradicting that a is b-possible.

We conclude the induction hypothesis.

�
6The case where b is not matched is still applied here.
7Then 1 = 0, and we wouldn’t want that, would we?
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Again, we claim that we could broaden the scope of the Theorem, by not imposing any
restrictions in the Matching Problem.

There were no restrictions on the order of the proposals: we didn’t bother imposing a
particular one, as long as it respected the conditions mentioned. It is so because now that we
know that the Gale-Shapley algorithm gives a B-Optimal Stable Matching, the uniqueness
of the optimality implies that all the orders may lead to the same Stable Matching: the
B-Optimal Stable Matching.

We conclude this section with some non-trivial observations that we leave as a comple-
mentary exercise, very useful for getting used to the details of the demonstrated lemmas.

Exercise 1. Soundness of the Gale-Shapley Algorithm
Show that Gale-Shapley Algorithm attains always the same result, independently of the

order in which the proposals are done.

Exercise 2. Prove that the number of proposals done along the Gale-Shapley algorithm is
independent of the order in which the proposals are done.

Exercise 3. Suppose that we have a Matching Problem with n girls and boys, the boys being
represented by A1, · · · , An, with no non-willing pairs and ni = 1. Suppose that for each j,
aj is Aj’s preferred girl, among the ones that are Aj-possible.

Prove that if i 6= j then ai 6= aj.

Exercise 4. Suppose that the men’s preference matrix M is a latin square (where we arrange
the preferences of each men in a line). Show that all columns of M give a Stable Matching
if and only if the women’s preference matrix W is the dual of M , this is, if Ai ranks aj in
position k, then aj ranks Ai in position n+ 1− k.

3 Corrupting the algorithm

We will now suppose that there is a player M ∈ B that wants to improve his match by lying
when asked for its own preference list. The goal will be to prove that the lie is in vain, and
that M will not improve his match by lying.

Theorem 1. Let M ∈ B, and consider a Matching Game between A and B, solved by the
Gale-Shapley Algorithm.

Then, if everyone besides M ∈ B is truthful in his preferences, M cannot achieve a better
match by lying.

Demonstration: See [3], Theorem 9.

�
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The more general statement can be found later in the same paper:

Theorem 2. Take a subset M ⊆ B of players, and consider a Matching Game between A
and B, solved by the Gale-Shapley Algorithm.

Then, if everyone besides the elements b ∈M ⊆ B is truthful in his preferences, there is
some b ∈M that does not improve his status.

Demonstration:
See [3], Theorem 17.

�

We give an example of a coalition that, although doesn’t improve the status of every
coercer, improves the status of some of them, and no coercers get a worst status:

Take A = {A,B,C} and B = {a, b, c}. Consider the real preferences as:

AA = (b, a, c)

AB = (a, c, b)

Ba = (A,B,C)

Bb = (B,A,C)

Bc = (B,C,A)

For the following analysis, the preferences list of C doesn’t matter. The final Matching,
obtained by the Gale-Shapley Algorithm, is:

S = {(A, b), (B, a), (C, c)}

Suppose now that b and c form a coalition, lying about c’s preference list. They say that
his list is:

Ec = (C,B,A)

The new Matching obtained by the Gale-Shapley Algorithm is:

S ′ = {(A, a), (B, b), (C, c)}

Note that a and b have improved their statuses, but c (who was the one who lied) has
not, respecting Theorem 1. This match seems very good, since no x ∈ B has lost status, but
is not stable, because (B, c) forms an unstable pair.

We will see that the Gale-Shapley Algorithm gives to A the worst stable matching. Also,
by lying, those from A can attain better results.
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Part IV

Solution to the original Problem

1 Some definitions

The solution presented here is a slight adaptation from [1].
Firstly, we will enrich our notions in graph theory with some definitions.

Definition 4. KA,B

By KA,B we mean a graph with vertices V = A]B and edges E = {(a, b) | a ∈ A, b ∈ B}.

Definition 5. Colorings
By a coloring of the vertices of a graph G, we mean a function C : V (G)→ Z≥1.

A coloring is admissible if there is no edge (a, b) ∈ E(G) such that C(a) = C(b).
The chromatic number of a graph, χ(G), is the minimum m ∈ Z≥0 such that there is an

admissible coloring function f that never exceeds m in any vertex: f(v) ≤ m, ∀v ∈ V .

Definition 6. Coloring restricted to functions on the vertices

Let f : V (G)→ Z≥1 be a function.
We say that a graph G is list-colorable to f , or f-colorable if, for any family of sets

{Cv}v∈V (G) with #Cv = f(v), there is an admissible coloring function g of G such that
g(v) ∈ Cv for each vertex v.

We call list-chromatic number of a graph χl(G) to the minimum m such that G is
m-colorable. 8
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Figure 3: In red, one kernel of the graph.

8Here we regard m as the constant function with value m.
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Definition 7. Kernel

In an oriented graph G, a kernel is a non-empty subset K ⊆ V (G) such that:

• I[S] = 0n, i.e. no pair of vertices a, b ∈ S has an edge (a, b) ∈ E(G) between them9;

• ∀x∈V (G)\S ∃s∈S : (x, s) ∈ E(G). I.e., every vertex in G either is in S or points to some
vertex in S.

Later, we will call a graph such that every generated subgraph has a kernel, a Kernelized
graph. For the sake of an example, Figure 3 shows a kernel of a graph.

Definition 8. Line graph

-

x1 x2

x3

x4

e1,3 e2,3

e1,2

e3,4

Figure 4: A graph and its line graph.

Given a graph G, its line graph L(G) is a graph in which each vertex represents an edge
of G such that

• V (L(G)) = E(G)

• (a, b) ∈ E(L(G)) if a and b share a vertex in G.

Figure 4 shows an example of a graph and its line graph.

2 Main Theorem

We can now state and prove the Dinitz Conjecture. Its breakdown will begin with a simple
construction of a graph φ, and two lemmas. The first one proves that φ is a kernelized
graph using stable matchings. The second one proves a very natural but tricky fact about
coloring an oriented graph, providing a sufficient condition on a function f in order to φ be
f -colorable.

The link between these two lemmas and the conjecture is very thin so the theorem follows
naturally.

9The notation I[S] stands for the subgraph generated by the set of vertices S
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Theorem 3. Fred Galvin’s Theorem
Let Q be a Dinitz’s Matrix, with choice sets Ci,j. Then Q is solvable.

Demonstration
We already observed that this problem is equivalent to finding a coloring c of the vertices

of L(Kn,n) such that c(a, b) ∈ Ca,b. In our notation it boils down to prove that L(Kn,n) is
n-colorable.

Consider an ordering of the edges in L(Kn,n), henceforth denoted by φ, that fulfills the
following:

• δ+(v) = n− 1 ∀v ∈ V , i.e., the outer degree of each vertex is n− 1.

• For each line i, if (i, j1) → (i, j2) and (i, j2) → (i, j3) are arrows in φ, then (i, j1) →
(i, j3) is also an arrow in φ. This means that each line i defines a total order >i in the
set {1, · · · , n} of the columns.

• For each column j, if (i1, j) → (i2, j) and (i2, j) → (i3, j) are arrows in φ, then
(i1, j) → (i3, j) is also an arrow in φ. This means that each column j defines a total
order >j in the set {1, · · · , n} of the lines.

This order relation is given by (a, b)→ (a, c)⇔ c >a b
For the sake of an example, note that the orientation given below, named once and for

all φ, achieves the envisaged.

Columns: link (i, j)→ (i′, j) if (i+ j − 2) mod n < (i′ + j − 2) mod n.
Rows: link (i, j)→ (i′, j) if (i+ j − 2) mod n > (i′ + j − 2) mod n.

Lemma 3. φ defines in L(Kn,n) a kernelized graph.

Demonstration:
Consider a subgraph S, induced by the vertices V of L(Kn,n). Since V is a set of vertices

of L(Kn,n), consider the set E of corresponding edges in Kn,n.
Regarding the orders defined by φ, and considering the possible matches given by E

(hence there may be some non-willing matches), with ni = 1 we are in the presence of
a Matching Problem. The Gale-Shapley Algorithm guarantees that there is some stable
Matching Eo. Let V o be the corresponding set of vertices in L(Kn,n).

We claim that V o is a kernel of S and we verify the two necessary conditions. The
imposition ni = 1 implies that each matching is disjoint: if a, b ∈ Eo share a vertex t then
it violates a condition to be a solution of our matching problem, namely, the number of
occurrences of t in the matching should be one or none. Hence no two edges in Eo share a
vertex, which means that they are not connected in L(Kn,n) and then V o is an independent
set.

Take some v ∈ V \ V o and the respective e ∈ E \ Eo. We will prove that there is some
edge (v, x) ∈ E(S)10 where x ∈ V o. Since e 6∈ Eo, and Eo is a stable matching, e = (a, b)

10The edges in the graph S
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is not an unstable pair so there is an edge (wlog, we say that the stability comes from a)
e∗ = (a, b∗) ∈ Eo such that b∗ >a b, which means the arrow (a, b)→ (a, b∗) is regarded in φ,
which translates to and edge e→ x ∈ φ where x = (a, b∗) ∈ V o as we want.

We conclude that V o is a kernel in S.

�

This lemma shows that kernels aren’t so complicated, because kernels are equivalent to
stable matchings. The following lemma isn’t much of a surprise:

Lemma 4. If G is a kernelized graph, and f : V (G) → Z≥0 such that for each vertex
v ∈ V (G) we have f(v) > δ+(v), then G is f -colorable.

Demonstration: We will use induction in the number of available colors, this is, in
#
⋃

v∈V Cv. Note that we are taking into account the inductive structure of {Cv}v∈V but
also of the functions f and the graphs G, so a precise induction will not be demonstrated
here.

For the base case, there is only one available color, so 1 = f(v) > δ+(v), then δ+(v) = 0
and the graph is empty. Any colouring is trivially admissible.

For the induction step, consider a specific color r ∈
⋃

v∈V Cv. We will color some of the
vertices of G with r and the others by induction hipotesys by considering a new f ′, a new
graph G′ and new lists C ′v such that

⋃
v∈V (G′)C

′
v =

⋃
v∈V (G)Cv \ {r}.

Consider all the vertices V that can be colored by r. Since G is kernelized, I[V ] has a
kernel So: those are the vertices that will be painted with the color r.

Consider the graph G′ inducted by V (G) \ So. Consider the function f ′ : V (G′) → Z≥0
such that for v ∈ V , f ′(v) = f(v)− 1, and for v∗ 6∈ V , f ′(v∗) = f(v∗). Consider also the lists
C ′v = Cv \ {r}.

Name δ′+ the function that counts the outer degree in the graph G′, maintaining the
notation δ+ for G.

The graph G′ in these conditions fulfills the Lemma requirement: we remark the condition
f ′(v) > δ′+(v) is verified because

- When v 6∈ V , f(v) = f ′(v) and δ′+(v) ≤ δ+(v) so we have f ′(v) = f(v) > δ+ ≥ δ′+(v)
- When v ∈ V , f(v) = f ′(v) + 1 and, in G, there is an arrow (v, x) for some x ∈ So which

vanishes in G′, so δ′+(v) ≤ δ+(v)− 1. Then f ′(v) = f(v)− 1 > δ+(v)− 1 ≥ δ′+(v)
In conclusion, by induction hypothesis, G′ is f ′-colorable and there is an admissible

coloring function in V (G′). Coloring the other vertices in So with r will not change the
acceptability of C (notice that So is independent), concluding our induction step.

�

We can now conclude the demonstration of the Theorem: since φ is kernelized by Lemma
3, and δ+(v) = n− 1 < n ∀v ∈ V by definition of φ, Lemma 4 gives us that L(Kn,n) = φ is
n-colorable.

�
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3 Some related open problems

1. Let G,H be graphs, and suppose G = L(H). Then χ(G) = χl(G).

We know that the very same question regarding general graphs G is false. A possible
counter-example is given below, considering the graph K4,2 with the following lists:

L1 = {1, 2}; L2 = {3, 4}; L3 = {1, 3}; L4 = {4, 2}; L5 = {1, 4}; L6 = {3, 2};
Naturally, χ(K4,2) = 2 since K4,2 is bipartite. However, there is no admissible list-
colouring to this presentation, hence χl(K4,2) > 2

2. Define kn as the least integer k such that G = L(Kn,n) is f -colorable, where f(v) = n,
∀v ∈ V (G) \ {v0} and f(v0) = k, where v0 ∈ V (G) is arbitrary.

Is it true that kn < n, where n > 2 is an integer?

For this, we know that k3 = 2, and that kn >
n
2

( of course we know that kn ≤ n, by
Fred Galvin’s Theorem). This question was pointed out by Fred Galvin in his paper
with the proof of the Dinitz’s Conjecture.

Part V

Following work
The following work isn’t available in English yet. In it, we present a new algorithm, a general
treatment of the stable matchings and a definition of the stable matching polytope and of
the stable matching lattice.

A closer relationship between the stable matching polytope and the stable matching
lattice is then proven at the end of the work.
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